Workpackage 4
Adaptive Translation Models

Daniel Ortiz-Martínez, Germán Sanchis-Trilles, Francisco Casacuberta

27 November 2012
Index

1. Introduction

2. Online Learning

3. Task 4.1: Online Learning Of SMT Generative Models

4. Task 4.1: Online Learning of SMT Scaling Factors

5. Conclusions

6. Future Work

7. Publications
Introduction

• Tasks in WP4:

<table>
<thead>
<tr>
<th>Task</th>
<th>Leader</th>
<th>PM</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>UPVLC</td>
<td>13</td>
<td>on track</td>
</tr>
<tr>
<td>4.2</td>
<td>UPVLC</td>
<td>11</td>
<td>inactive</td>
</tr>
<tr>
<td>4.3</td>
<td>UPVLC</td>
<td>13</td>
<td>inactive</td>
</tr>
</tbody>
</table>

• WP4 deals with adaptation in interactive translation prediction (ITP)

• Activity during this first year was limited to Task 4.1

• Task 4.1 studies online learning techniques for ITP

• Initial progress is focused on the online estimation of the parameters of statistical machine translation (SMT) models
Introduction: SMT and ITP

• State-of-the-art SMT systems follow a loglinear approach:

$$\hat{y} = \arg\max_{y, a} \left\{ \sum_{m=1}^{M} \lambda_m h_m(y, a, x) \right\}$$

(a is the hidden alignment variable introduced by the translation models)

• In the ITP scenario, we have to find a suffix s for a given prefix p plus the next key-stroke k introduced by the user:

$$\hat{s} = \arg\max_{s, a} \left\{ \sum_{m=1}^{M} \lambda_m h_m(y, a, x) \right\}$$

(note that $y \equiv pk$s)
Online Learning

- Online learning algorithms proceed in a sequence of trials

- Each trial can be decomposed into three steps:
 1. The learning algorithm receives an instance
 2. The learning algorithm predicts a label for the instance
 3. The true label of the instance is presented to the learning algorithm
SMT and Online Learning

• SMT allows us to translate a given source text without human intervention
• Output of SMT systems can be supervised to obtain high-quality translations
• User feedback can be used to extend the statistical models of the SMT system
• Online learning fits naturally in two well-known SMT applications:
 – Post-editing (PE)
 – ITP
• Online learning can be used to estimate:
 – Parameters of the generative models
 – Scaling factors of the loglinear combination
Task 4.1: Online Learning of SMT Generative Models

Basic SMT System

- We use a log-linear model composed of seven feature functions:

 - $h_1(y) = \log(\prod_{i=1}^{\vert y \vert+1} p(y_i | y_{i-n+1}))$ Language model

 - $h_2(y, x) = \log(p(\vert x \vert \vert \vert y \vert))$ Sentence length model

 - $h_3(y, a, x) = \log(\prod_{k=1}^{K} p(\tilde{x}_k | \tilde{y}_a_k))$ Inverse translation model

 - $h_4(y, a, x) = \log(\prod_{k=1}^{K} p(\tilde{y}_a_k | \tilde{x}_k))$ Direct translation model

 - $h_5(y, a, x) = \log(\prod_{k=1}^{K} p(\vert \tilde{y}_k \vert))$ Target phrase length model

 - $h_6(y, a, x) = \log(\prod_{k=1}^{K} p(\vert \tilde{x}_k \vert \vert \tilde{y}_a_k \vert))$ Source phrase length model

 - $h_7(a) = \log(\prod_{k=1}^{K} p(\tilde{a}_k | \tilde{a}_{k-1}))$ Distortion model

NOTE: Phrase models determine a bisegmentation between x and y: $(\tilde{x}_1^K, \tilde{y}_1^K, \tilde{a}_1^K)$
Task 4.1: Online Learning of SMT Generative Models
Learning from New Sentence Pairs

- Given a new sentence pair \((x, y)\), the log-linear model is updated.

- To do this, a set of sufficient statistics that can be incrementally updated is maintained for each feature function \(h_i(y, a, x)\).

- In this presentation we will focus on the sufficient statistics for the translation models \((h_3)\):

\[
h_3(y, a, x) = \log(\prod_{k=1}^{K} p(\tilde{x}_k | \tilde{y}_a_k))
\]
Task 4.1: Online Learning of SMT Generative Models

Incremental Inverse Translation Model (h_3)

• We use a smoothed inverse phrase-based translation model:

$$p(\tilde{x}_k | \tilde{y}_{\tilde{a}_k}) = \beta p_{phr}(\tilde{x}_k | \tilde{y}_{\tilde{a}_k}) + (1 - \beta)p_{hmm}(\tilde{x}_k | \tilde{y}_{\tilde{a}_k})$$

- $p_{phr}(\cdot)$ → statistical phrase-based dictionary
- $p_{hmm}(\cdot)$ → HMM-based alignment model

• Inverse phrase model probabilities are estimated from phrase counts:

$$p(\tilde{x} | \tilde{y}) = \frac{c(\tilde{x}, \tilde{y})}{\sum_{\tilde{x}'} c(\tilde{x}', \tilde{y})}$$

• Standard estimation procedures use word alignment matrices to extract phrase counts
Task 4.1: Online Learning of SMT Generative Models

Incremental Inverse Translation Model (h_3)

• HMM models are used here for:
 – smoothing
 – generating word alignment matrices

• We use the incremental EM algorithm to train the HMM models

• The sufficient statistics are a set of expected counts collected after the presentation of a new training pair
Task 4.1: Online Learning of SMT Generative Models

Experiments

- Experiments were carried out using Xerox and EU-TT2 corpora (only Xerox results are shown here)

- The Xerox task consists on the translation of a set of printer manuals from English to Spanish, French and German

- The EU-TT2 corpus is extracted from the proceedings of the European Parliament in the same language pairs as the Xerox task

- Our proposals were evaluated using:
 - BLEU score
 - Key-stroke and mouse-action ratio (KSMR) measure: effort required from the user to generate the target translations
Task 4.1: Online Learning of SMT Generative Models

Results

• **Learning from previously estimated models** (experiments with the English-French Xerox corpus are shown)

<table>
<thead>
<tr>
<th>ITP system</th>
<th>BLEU</th>
<th>KSMR</th>
<th>LT (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng-Fre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>batch</td>
<td>33.7± 2.0</td>
<td>33.9± 1.3</td>
<td>-</td>
</tr>
<tr>
<td>online</td>
<td>42.2± 2.2</td>
<td>27.9± 1.3</td>
<td>0.09</td>
</tr>
</tbody>
</table>

• **Learning from scratch:**

 – 10,000 sentences randomly extracted from the English-Spanish Xerox corpus were interactively translated

 – User effort measured in terms of KSMR decreases as the number of interactively translated sentences increases
Task 4.1: Online Learning of SMT Scaling Factors

Discriminative Ridge Regression

- Good hypotheses within a n-best list score higher, bad hypotheses lower

- Originally designed for conventional SMT (PE)

- Establish correlation between difference in translation quality and difference in score

- Find $\hat{\lambda}_t$ such that $R_x \cdot \hat{\lambda}_t \propto l_x$, with

 - R_x difference of values in h between every $y \in n$-best and best hypothesis y^*
 - l_x difference in quality between every $y \in n$-best and best hypothesis y^*
Task 4.1: Online Learning of SMT Scaling Factors

Modified DRR in ITP

- Several problems need to be tackled

- Metric to be optimised is inherent to a wordgraph
 - What are n-best wordgraphs?
 - Consider N random weight-vectors
 - Compute wordgraph associated to each weight-vector
 - Not true list of n-best wordgraphs, but key is to obtain good and bad wordgraphs

- Features should no longer correspond to a single hypothesis, but to a wordgraph
 - Consider the features of the best hypothesis (path) of each wordgraph
Task 4.1: Online Learning of SMT Scaling Factors

Experiments

- Corpora used:
 - Spanish–English Europarl (training and development)
 - News-Commentary (test)

- Two different scenarios:
 - PE: quality measured with TER
 - ITP: quality measured with WSR

- Baseline with Moses decoder
Task 4.1: Online Learning of SMT Scaling Factors

Results with DRR

- Using TER as translation metric, DRR provides improvements in PE, but not in ITP
- Using modified DRR, improvements in ITP, but not mirrored to PE
Conclusions

• Online learning techniques for SMT have been proposed

• Such techniques allow to incrementally update the parameters of the generative models and their scaling factors

• Estimation of scaling factors in ITP is being studied

• Empirical results clearly show the utility of online learning in SMT and ITP
Future Work

- Test alternative online learning techniques
- Online learning of scaling factors for ITP still poses problems that are to be studied
- Extend experimentation to additional corpora (including the corpora officially used in CASMACAT)
Publications during the first year of the project:

Previous publications: